A simple population code in a fast-changing world
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Introduction The structure of the code Recoding

We find the posterior distribution over the stimulus at time T given all spikes observed so far Fix decoding kernel g(l,s,t) and find a new
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Kemere et al.(2004) have used informative priors to decode movement-related activity and found it to
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Time lag c) has a shape that is determined by the covariance of the Gaussian process prior
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