Statistical inference in nonlinear stochastic neurones

Quentin Huys
Misha Ahrens
Liam Paninski
How can we use rich new data to build models efficiently?

Quentin Huys
Misha Ahrens
Liam Paninski
simultaneous multisite recordings of transmembrane voltage

noisy

Djurisic et al. 2004
IO function $O = f(I)$

- f: cable equation – compartmental model
 - nonlinear dynamics
- Output?
 - rate, individual spikes, bursts, spike patterns?
 - stochastic formulation gives metric
- Input?
- Noise?
A stochastic neurone

\[C_x \frac{dV_x(t)}{dt} = I_{\text{ch}} + I_{\text{int}} + I_{\text{syn}} + \sigma_x dN_{x,t} \]

\[I_{\text{channels}} = \bar{g}_c g_c(t)(E_c - V(t)) \]

\[I_{\text{synaptic}} = \sum_{\tau} w_{\tau} u_{\tau}^s(t)(E_s - V(t)) \]

\[I_{\text{intercompartmental}} = f_{x,y}(V_y(t) - V_x(t)) \]
Outline

- Assume known kinetics and noiseless observations
- Relax
 - noisy observations
 - model-based smoothing
 - parameter inference
 - unknown kinetics
Known kinetics

\[C_x \frac{dV_x(t)}{dt} = I_{\text{ch}} + I_{\text{int}} + I_{\text{syn}} + \sigma_x dN_{x,t} \]

\[I_{\text{channels}} = g_c g_c(t)(E_c - V(t)) \]

\[
\frac{dx}{dt} = (1 - x)\alpha(V(t)) - x_t\beta(V(t)) \\
x_{t+1} = x_t + dt \left[(1 - x_t)\alpha(V_t) - x_t\beta(V_t) \right]
\]

\[I_{\text{synaptic}} = \sum_{\tau} w_{\tau} u_{\tau}^s(t)(E_s - V(t)) \]

\[I_{\text{intercompartmental}} = f_{x,y}(V_y(t) - V_x(t)) \]
A big cell – 1000 compartments
Channel density distribution

A

\[\text{est } g_{Na} \text{ vs true } g_{Na} \]

B

\[\text{est } g_{K} \text{ vs true } g_{K} \]

C

\[\text{est } g_{L} \text{ vs true } g_{L} \]

D

\[\text{est } g_{\text{intercomp}} \text{ vs true } g_{\text{intercomp}} \]

E

Voltage [mV] vs Time [ms]

Quentin Huys Gatsby Unit, UCL

Inference in stochastic neurones
Synaptic input

\[I_{\text{synaptic}} = \sum_{\tau} w_\tau u_\tau^s(t)(E_s - V(t)) \]
Djurisic et al. 2004

simultaneous multisite recordings of transmembrane voltage
noisy

Quentin Huys Gatsby Unit, UCL

Inference in stochastic neurones
Outline

• Assume known kinetics and noiseless observations
• Relax
 – noisy observations
 • model-based smoothing (E)
 • parameter inference (M)
 – unknown kinetics
Hidden dynamical system

\[C_x \frac{dV_x(t)}{dt} = I_{ch} + I_{int} + I_{syn} + \sigma_x dN_{x,t} \]
Hidden dynamical system

\[p(V_{t+1} | V_t, o_t, \bar{g}) \]

\begin{align*}
V(t-2) & \quad \rightarrow \quad V(t-1) & \quad \rightarrow \quad V(t) & \quad \rightarrow \quad V(t+1) & \quad \rightarrow \quad V(t+2) \\
O(t-2) & \quad \downarrow \quad & \quad O(t) & \quad \downarrow \quad & \quad O(t+2) \end{align*}

Quentin Huys Gatsby Unit, UCL

Inference in stochastic neurones
Hidden dynamical system

\[p(V_{t+1} | V_t, o_t, \bar{g}) \]

\[p(M_t | V_t) = \mathcal{N}(V_t, \sigma_O) \]

Quentin Huys Gatsby Unit, UCL
Hidden dynamical system

\[p(V_{t+1} | V_t, o_t, \bar{g}) \]

\[p(M_t | V_t) = \mathcal{N}(V_t, \sigma_O) \]

\[p(V_{1:T} | M_{1:t}) \]
Model-based smoothing – know densities

If true densities (and kinetics) are known, can do model-based smoothing.

Know lots, get lots.
Smoothing and upsampling

Temporal subsampling

Observation noise

Quentin Huys Gatsby Unit, UCL

Inference in stochastic neurons
Voltage from [Ca]
[Ca] from voltage
EM for channel densities

E step: infer some expected statistics given channel densities

\[
\hat{w}_t^i = \hat{w}_t^i \left(\sum_j \frac{w_{t+1}^j p(V_{t+1}^j | V_t^i)}{\sum_k \hat{w}_t^k p(V_{t+1}^j | V_t^k)} \right)
\]

M step: update densities given expected sufficient statistics

\[
\langle J_{ct} J_{c't} \rangle \quad \langle J_{ct} V_t \rangle \quad \langle J_{ct} V_{t+1} \rangle
\]
EM: Unknown densities

![Graph showing voltage, gates, and current over time.](image)

Quentin Huys Gatsby Unit, UCL

Inference in stochastic neurones
Assume known kinetics and noiseless observations
 - Channel density distributions in large compartmental models
 - Synaptic input time and strength
Noisy observations
 - EM with particle smoothing
 - model-based smoothing (E)
 - parameter inference (M)
BUT: still assume known kinetics
Spatial subsampling

A. g_{Na} [mS/cm2] vs. Dendrite #

B. g_k [mS/cm2] vs. Dendrite #

C. g_L [mS/cm2] vs. Dendrite #

D. $E_{[f.]} +/\!/- 1$ STD vs. Subsampling factor
E step: Particle smoothing

\[
< V_{1:T} > = \int dV_{1:T} p(V_{1:T} | M_{1:t}) V_{1:T}
= \int dV_{1:T} q(V_{1:T}) \frac{p(V_{1:T} | M_{1:t})}{q(V_{1:T})} V_{1:T}
\approx \sum_i V_{1:T}^i w_i \quad \text{(importance sampling)}
\]

- Use exact distribution
 \[q(V_t) = p(V_t | V_{1:t-1}, M_{1:t})\]
 \[\propto p(V_t | V_{t-1}) p(V_{t-1} | V_{1:t-2}, M_{1:t-2})\]

- Filter weights
 \[w_{t|i}^* = w_{t-1}^i p(M_t | V_t^i)\]
 \[\tilde{w}_t^i = w_{t|t}^i / (\sum_j w_{t|t}^j)\]

- Smoothing weights
 \[w_t^i = \tilde{w}_t^i \left(\sum_j \frac{w_{t+1}^j p(V_{t+1}^j | V_t^i)}{\sum_k \tilde{w}_t^k p(V_{t+1}^k | V_t^i)} \right)\]
Synaptic input

Synaptic conductances

Channel conductances

A

B

C

Inh spikes | Voltage [mV] | Exc spikes

Time [ms]

max conductance [mS/cm²]

HHNa, HHK, Leak, MNa, MK, SNa, SKA, SKDR

Inferred (MAP) spikes

Inferred (ML) channel densities

True parameters

Data (voltage trace)