Research

Computational Psychiatry & Decision-making

Other Research Topics

 

Copyright

The documents distributed here have been provided as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Abstracts

  • pdf Psychiatry: insights into depression through normative decision-making models
  • Huys QJM, Vogelstein JV and Dayan P
  • NIPS 2008
  • Decision making lies at the very heart of many psychiatric diseases. It is also a central theoretical concern in a wide variety of fields and has undergone detailed, in-depth, analyses. We take as an example Major Depressive Disorder (MDD), applying insights from a Bayesian reinforcement learning framework. We focus on anhedonia and helplessness. Helplessness-a core element in the conceptual- izations of MDD that has lead to major advances in its treatment, pharmacolog- ical and neurobiological understanding-is formalized as a simple prior over the outcome entropy of actions in uncertain environments. Anhedonia, which is an equally fundamental aspect of the disease, is related to the effective reward size. These formulations allow for the design of specific tasks to measure anhedonia and helplessness behaviorally. We show that these behavioral measures capture explicit, questionnaire-based cognitions. We also provide evidence that these tasks may allow classification of subjects into healthy and MDD groups based purely on a behavioural measure and avoiding any verbal reports.