Computational Psychiatry & Decision-making

Other Research Topics



The documents distributed here have been provided as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.


  • pdf The association of the OPRM1 A118G polymorphism and Pavlovian-to-instrumental transfer: clinical relevance for alcohol dependence
  • Sebold M, Garbusow M, Cerci D, Chen K, Sommer C, Huys QJM, Nebe S, Rapp M, Veer IM, Zimmermann US, Smolka MN, Walter H, Heinz A, Friedel E
  • J Psychopharmacology (2020) in press
  • Background: Pavlovian-to-instrumental transfer (PIT) quantifies the extent to which a stimulus that has been associated with reward or punishment alters operant behavior. In alcohol dependence (AD), the PIT effect serves as a paradigmatic model of cue-induced relapse. Preclinical studies have suggested a critical role of the opioid system in modulating Pavlovian-instrumental interactions. The A118G polymorphism of the OPRM1 gene affects opioid receptor availability and function. Furthermore, this polymorphism interacts with cue-induced approach behavior and is a potential biomarker for pharmacological treatment response in AD. Here, we test whether the OPRM1 polymorphism is associated with the PIT effect and relapse in AD. Methods: Using a Pavlovian-to-instrumental transfer task, we examined three independent samples including young healthy subjects (n=161), detoxified alcohol-dependent patients (n=186) and age-matched healthy controls (n=105). We used data of a larger study designed to assess the role of learning mechanisms in the development and maintenance of AD. Subjects were genotyped for the A118G (rs1799971) polymorphism of the OPRM1 gene. Relapse was assessed after three months. Results: In all three samples, participants with the minor OPRM1 G-Allele (G+-carriers) showed increased expression of the PIT effect in the absence of learning differences. Relapse was not associated with the OPRM1 polymorphism. Instead, G+ carriers displaying increased PIT effects were particularly prone to relapse. Conclusion: These results support a role for the opioid system in incentive salience motivation. Furthermore, they inform a mechanistic model of aberrant salience processing and are in line with the pharmacological potential of opioid receptor targets in the treatment of AD.