Research

Computational Psychiatry & Decision-making

Other Research Topics

 

Copyright

The documents distributed here have been provided as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Abstracts

  • doi pdf
  • Encoding and decoding spikes for dynamic stimuli
  • Natarajan R, Huys QJM, Dayan P and Zemel R
  • Neural Computation (2008) 20(9):2325-60
  • Naturally occurring sensory stimuli are dynamic. In this letter, we consider how spiking neural populations might transmit information about continuous dynamic stimulus variables. The combination of simple encoders and temporal stimulus correlations leads to a code in which information is not readily available to downstream neurons. Here, we explore a complex encoder that is paired with a simple decoder that allows representation and manipulation of the dynamic information in neural systems. The encoder we present takes the form of a biologically plausible recurrent spiking neural network where the output population recodes its inputs to produce spikes that are independently decodeable. We show that this network can be learned in a supervised manner by a simple local learning rule.