Research

Computational Psychiatry & Decision-making

Other Research Topics

 

Copyright

The documents distributed here have been provided as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Abstracts

  • doi pdf Computational psychiatry as a bridge from neuroscience to clinical applications
  • Huys QJM*, Maia T* and Frank MJ
  • Nature Neuroscience (2016) 19(3):404--413
    Commentary in Scientific American
  • Translating advances in neuroscience into benefits for patients with mental illness presents enormous challenges because it involves both the most complex organ----the brain---and its interaction with a similarly complex environment. Dealing with such complexities demands powerful techniques. Computational psychiatry combines multiple levels and types of computation with multiple types of data in an effort to improve understanding, prediction, and treatment of mental illness. Computational psychiatry, broadly defined, encompasses two complementary approaches: data-driven and theory-driven. Data-driven approaches apply machine-learning methods to high-dimensional data to improve classification of disease, predict treatment outcomes, or improve treatment selection. These approaches are generally agnostic as to the underlying mechanisms. Theory-driven approaches, in contrast, use models that instantiate prior knowledge of, or explicit hypotheses about, such mechanisms, possibly at multiple levels of analysis and abstraction. We review recent advances in both approaches, with an emphasis on clinical applications, and highlight the utility of combining them.