Research

Computational Psychiatry & Decision-making

Other Research Topics

 

Copyright

The documents distributed here have been provided as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Abstracts

  • doi pdf code Efficient estimation of detailed single-neuron models
  • Huys QJM, Ahrens MB and Paninski L
  • J. Neurophysiol. (2006) 96: 872-890
  • Biophysically accurate multicompart-mental models of individual neurons have significantly advanced our understanding of the input≠ output function of single cells. These models depend on a large number of parameters that are difficult to estimate. In practice, they are often hand-tuned to match measured physiological behaviors, thus raising questions of identifiability and interpretability. We propose a statistical approach to the automatic estimation of various biologically relevant parameters, including 1) the distribution of channel densities, 2) the spatiotemporal pattern of synaptic input, and 3) axial resistances across extended dendrites. Recent experimental advances, notably in voltage-sensitive imaging, motivate us to assume access to: i) the spatiotemporal voltage signal in the dendrite and ii) an approximate description of the channel kinetics of interest. We show here that, given i and ii, parameters 1≠3 can be inferred simultaneously by nonnegative linear regression; that this optimization problem possesses a unique solution and is guaranteed to converge despite the large number of parameters and their complex nonlinear interaction; and that standard optimization algorithms efficiently reach this optimum with modest computational and data requirements. We demonstrate that the method leads to accurate estimations on a wide variety of challenging model data sets that include up to about 104 parameters (roughly two orders of magnitude more than previously feasible) and describe how the method gives insights into the functional interaction of groups of channels.